使用混合并行训练 GPT-2
作者: Hongxin Liu, Yongbin Li, Mingyan Jiang
前置教程
示例代码
相关论文
- Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
- Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
引言
在上一篇教程中,我们介绍了如何用流水并行训练 ViT。在本教程中,你将学习一个更复杂的场景--用混合并行方式训练GPT-2。在这种情况下,由于GPT-2过大,即使CPU内存也无法容纳它。因此,该模型必须被分割。
目录
在本教程中,我们将介绍:
- 初始化混合并行插件
- 定义 GPT-2 模型的训练组件
- 使用 HybridParallelPlugin 增强GPT-2模型
- 使用混合并行训练 GPT-2
导入依赖库
from typing import Callable, List, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from tqdm import tqdm
from transformers import AutoConfig, GPT2ForSequenceClassification, get_linear_schedule_with_warmup
from transformers import AutoTokenizer
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
定义plugin
定义一个HybridParallelPlugin
对象,指定所需要使用的并行策略,在该例子中,同时使用了流水线并行和zero1.
plugin = HybridParallelPlugin(
tp_size=1,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
zero_stage=1,
precision="fp16",
initial_scale=1,
)
创建分布式环境.
# Launch ColossalAI
colossalai.launch_from_torch(seed=42)
coordinator = DistCoordinator()
定义GPT-2模型的训练组件
在使用混合并行之前,您需要定义训练所使用的组件。 定义超参数。
NUM_EPOCHS = 3
BATCH_SIZE = 32
LEARNING_RATE = 2.4e-5
WEIGHT_DECAY = 0.01
WARMUP_FRACTION = 0.1
获取数据集。您可以使用plugin.prepare_dataloader
生成dataloader,也可以自定义您的dataloader。
def tokenize_batch(batch, tokenizer: Optional[AutoTokenizer] = None, max_length: int = 2048):
texts = [sample["sentence1"] + sample["sentence2"] for sample in batch]
data = tokenizer(texts, return_tensors="pt", padding="max_length", truncation=True, max_length=max_length)
data = {k: v.cuda() for k, v in data.items()}
data["labels"] = data["input_ids"].clone()
return data
tokenizer = AutoTokenizer.from_pretrained("gpt2")
dataset = datasets.load_dataset("glue", "mrpc")
train_dataloader = plugin.prepare_dataloader(
dataset["train"],
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
collate_fn=partial(tokenize_batch, tokenizer=tokenizer, max_length=512),
)
定义GPT-2模型。
cfg = AutoConfig.from_pretrained("gpt2", num_labels=2)
model = GPT2ForSequenceClassification.from_pretrained("gpt2", config=cfg).cuda()
准备优化器
lr = LEARNING_RATE * coordinator.world_size
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": WEIGHT_DECAY,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
准备 lr_scheduler
和 criterion
,需要注意的是,当混合并行使用了管道并行时,还需定义criterion
函数。这个函数应该以模型前后向的输入和输出作为参数,并返回loss。
# lr scheduler
total_steps = len(train_dataloader) * NUM_EPOCHS
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps,
)
def _criterion(outputs, inputs):
return outputs.loss
增强GPT-2模型
使用 HybridParallelPlugin 定义一个 booster(增强器)。根据设置的插件参数,booster会将一种或者多种并行策略注入到模型中。该例子中使用了管道并行,zero1,及半精度训练等优化。
booster = Booster(plugin=plugin)
使用定义的 booster 来增强这些组件。
model, optimizer, _criterion, _, lr_scheduler = booster.boost(
model, optimizer, criterion=_criterion, lr_scheduler=lr_scheduler
)
使用混合并行训练 GPT-2
在前面的教程中,我们已经解释了如何使用 Booster 和 HybridParallelPlugin 将各种并行特性注入到模型及其训练组件中。现在我们可以开始模型训练。
定义一个训练函数。当使用了管道并行时,需要调用booster.execute_pipeline
进行模型训练的阶段调度。
def train_epoch(
epoch: int,
model: nn.Module,
optimizer: Optimizer,
_criterion: Callable,
lr_scheduler: LRScheduler,
train_dataloader: DataLoader,
booster: Booster,
coordinator: DistCoordinator,
):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
print_flag = (not use_pipeline and coordinator.is_master()) or (use_pipeline and is_pp_last_stage)
total_step = len(train_dataloader)
model.train()
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(
range(total_step),
desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]",
disable=not print_flag,
) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
train_dataloader_iter, model, _criterion, optimizer, return_loss=True
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(train_dataloader_iter)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
训练 GPT-2 模型。
for epoch in range(NUM_EPOCHS):
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, train_dataloader, booster, coordinator)