跳到主要内容

基于Chunk内存管理的零冗余优化器 (ZeRO)

作者: Hongxiu Liu, Jiarui Fang, Zijian Ye

前置教程:

示例代码

相关论文

引言

零冗余优化器 (ZeRO) 通过对三个模型状态(优化器状态、梯度和参数)进行划分而不是复制他们,消除了数据并行进程中的内存冗余。该方法与传统的数据并行相比,内存效率得到了极大的提高,而计算粒度和通信效率得到了保留。

  1. 分片优化器状态: 优化器状态 (如 Adam optimizer, 32位的权重, 以及一二阶动量估计) 被划分到各个进程中, 因此每个进程只更新其分区。
  1. 分片梯度: 在梯度在数据并行进程组内进行 reduction 后, 梯度张量也被划分,这样每个进程只存储与其划分的优化器状态对应的梯度。 注意, Colossal-AI 将梯度转换为 FP32 格式以参与更新参数。

  2. 分片参数: 16位的模型参数被划分到一个数据并行组的进程中。

  3. Gemini: 对于参数、梯度、优化器状态的动态异构内存空间管理器。

此外,我们还将介绍基于Chunk内存管理的零冗余优化器。

在使用零冗余优化器 (ZeRO)时,我们通过切分参数的方式对模型进行分布式存储,这种方法的优点是每个节点的内存负载是完全均衡的。但是这种方式有很多缺点。首先,通信时需要申请一块临时内存用来通信,通信完毕释放,这回导致存在内存碎片化的问题。其次,以Tensor为粒度进行通信,会导致网络带宽无法充分利用。通常来说传输的消息长度越长带宽利用率越高。

利用ColossalAI v0.1.8引入了Chunk机制,我们可以提升ZeRO的性能。我们将运算顺序上连续的一组参数存入一个Chunk中(Chunk即一段连续的内存空间),每个Chunk的大小相同。Chunk方式组织内存可以保证PCI-e和GPU-GPU之间网络带宽的高效利用,减小了通信次数,同时避免潜在的内存碎片。

在v0.1.8之前,ZeRO在进行参数聚合时通信成本较高,如果一个参数在连续的几次计算中被使用多次,即会发生多次通信,效率较低。这种情况在使用Checkpoint时非常常见,参数在计算backward时会重计算一遍forward。这种情况下,ZeRO的效率便不高。

以GPT为例,其Checkpoint会应用在每一个GPT Block上,每一个GPT Block包含一个Self-Attention层和MLP层。在计算Backward时,会依次计算Self-Attention层、MLP层的forward,然后依次计算MLP层、Self-Attention层的backward。如使用Chunk机制,我们将Self-Attention层和MLP层放在同一个Chunk中,在每个GPT Block的backward的中便无需再通信。

除此之外,由于小Tensor的通信、内存移动没法完全利用NVLINK、PCIE带宽,而且每次通信、内存移动都有kernel launch的开销。使用了Chunk之后可以把多次小Tensor的通信、内存移动变为一次大Tensor的通信、内存移动,既提高了带宽利用,也减小了kernel launch的开销。

我们提供了轻量级的Chunk搜索机制,帮助用户自动找到内存碎片最小的Chunk尺寸。

使用

GeminiDDP

我们将运用GeminiDDP的方式来使用基于Chunk内存管理的ZeRO。这是我们新包装的torch.Module ,它使用 ZeRO-DP 和 Gemini,其中ZeRO 用于并行,Gemini 用于内存管理。

同样需要确保你的模型是在 ColoInitContext 的上下文中初始化的。

with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg):
model = gpt2_medium(checkpoint=True)

定义模型参数如下:

chunk_manager = init_chunk_manager(model=module,
init_device=device,
hidden_dim=hidden_dim,
search_range_mb=search_range_mb,
min_chunk_size_mb=min_chunk_size_mb)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager)

hidden dim是DNN的隐藏维度。用户可以提供这个参数来加快搜索速度。如果用户在训练前不知道这个参数也可以。 我们将使用默认值 1024。min_chunk_size_mb是以兆字节为单位的最小块大小。如果参数的总大小仍然小于最小块大小,则所有参数将被压缩为一个小块。

初始化优化器。

optimizer = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=2**5)

训练

optimizer.zero_grad()
outputs = model(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
optimizer.backward(loss)
optimizer.step()

⚠️ 注意:请不要使用loss.backward(),规范写法是optimizer.backward(loss)

训练GPT

在此例程中, 我们使用 Hugging Face Transformers,并以 GPT2 Medium 为例。你必须在允许该例程前安装 transformers

为了简单起见,我们在这里只使用随机生成的数据。

首先我们只需要引入Huggingface transformersGPT2LMHeadModel来定义我们的模型,不需要用户进行模型的定义与修改,方便用户使用。

class GPTLMModel(nn.Module):

def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.model = GPT2LMHeadModel(
GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size))
if checkpoint:
self.model.gradient_checkpointing_enable()

def forward(self, input_ids, attention_mask):
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]

def gpt2_medium(checkpoint=False):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)

定义损失函数:

class GPTLMLoss(nn.Module):

def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()

def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

定义张量并行和参数分片策略:

def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
for mn, module in model.named_modules():
for pn, param in module.named_parameters(recurse=False):
if hasattr(param, 'visited'):
continue
param.set_dist_spec(ReplicaSpec())
if 'mlp.c_fc' in mn:
if 'weight' in pn or 'bias' in pn:
split_param_col_tp1d(param, pg)
param.compute_spec.set_output_replicate(False)
else:
param.set_dist_spec(ReplicaSpec())
elif 'mlp.c_proj' in mn:
if 'weight' in pn:
split_param_row_tp1d(param, pg)
else:
param.set_dist_spec(ReplicaSpec())
elif 'wte' in mn or 'wpe' in mn:
split_param_col_tp1d(param, pg)
elif 'c_attn' in mn or 'c_proj' in mn:
split_param_col_tp1d(param, pg)
else:
param.set_dist_spec(ReplicaSpec())

param.visited = True
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
param.set_tensor_spec(*spec)


def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(0, param, pg)


def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(-1, param, pg)

定义一个使用 Gemini + ZeRO DDP 的模型:

def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
cai_version = colossalai.__version__
if version.parse(cai_version) > version.parse("0.1.10"):
from colossalai.nn.parallel import GeminiDDP
model = GeminiDDP(model,
device=get_current_device(),
placement_policy=placememt_policy,
pin_memory=True,
search_range_mb=32)
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
from colossalai.gemini import ChunkManager, GeminiManager
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
chunk_manager = ChunkManager(chunk_size,
pg,
enable_distributed_storage=True,
init_device=GeminiManager.get_default_device(placememt_policy))
model = ZeroDDP(model, gemini_manager)
else:
raise NotImplemented(f"CAI version {cai_version} is not supported")
return model

由于我们在这个例子中对GPT进行预训练,因此只使用了一个简单的语言模型损失函数。

写一个获得随机输入的函数:

def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask

最后,我们可以定义我们的训练循环:

def main():
args = parse_args()
BATCH_SIZE = 8
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = 10
colossalai.launch_from_torch(config={})

# build criterion
criterion = GPTLMLoss()

torch.manual_seed(123)
default_pg = ProcessGroup(tp_degree=args.tp_degree)
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
# build GPT model
with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg):
model = gpt2_medium(checkpoint=True)
pg = default_pg
# Tensor Parallelism (TP)
tensor_parallelize(model, pg)
# Gemini + ZeRO DP, Note it must be used after TP
model = gemini_zero_dpp(model, pg, args.placement)
# build optimizer
optimizer = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=2**5)
numel = sum([p.numel() for p in model.parameters()])
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
torch.cuda.synchronize()
model.train()
for n in range(NUM_STEPS):
# we just use randomly generated data here
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
optimizer.zero_grad()
outputs = model(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
optimizer.backward(loss)
optimizer.step()

torch.cuda.synchronize()

⚠️ 注意:如果你使用Gemini模块的话,请不要使用我们之前提到过的梯度累加。 完整的例子代码可以在 Train GPT with Colossal-AI. 获得。